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1. Introduction

The pattern of charged fermion masses and quark mixing angles is described by 13 param-

eters in the minimal Standard Model (3 charged lepton masses, 6 quark masses, 3 quark

mixing angles and 1 quark CP violating phase). The discovery of neutrino masses and

lepton mixing angles requires a further 9 parameters if neutrinos are Majorana (3 neutrino

masses, 3 lepton mixing angles and 3 lepton CP violating phases), or 7 parameters if neu-

trinos are Dirac (2 fewer lepton phases). The discovery of neutrino mass has consequently

increased the number of parameters in the flavour sector dramatically, providing further

motivation to understand the pattern of fermion masses and mixings. The neutrino sector

also provides additional data and clues which could enable this goal to be achieved. For

example, the neutrino sector is distinguished by having two large mixing angles, one small

mixing angle, and very small mass eigenvalues [1]. Recently, as neutrino data has become

more accurate, intriguing patterns of mixing angles in the lepton sector have begun to

emerge [2].
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A particularly promising strategy, leading to an effective reduction of the number of

independent Yukawa couplings, is the idea of Grand Unified Theories (GUTs) [3 – 5]. GUTs

allow one to understand the variety of Standard Model (SM) fermions as arising from a few

fundamental representations and often lead to strong correlations amongst the correspond-

ing low energy Yukawa couplings. A typical example could be the relation mb ≈ mτ [3]

emerging in a natural way in the class of GUT models based on SU(5) gauge symmetry [3].

Another example would be the interesting correlation between b − τ unification and the

large atmospheric mixing angle [6, 7] revealed in a class of renormalizable SO(10) models

with type-II contribution dominating the seesaw formula [8 – 15]. Although the SM flavour

problem is just one of many questions confronting GUTs (and typically is not the main

motivation to go beyond the SM gauge structure) it is still very interesting that the de-

tailed information on the quark and lepton masses and mixing patterns can lead to severe

constraints on model building. For example it has been shown that minimal renormaliz-

able SUSY SO(10) does not provide a consistent description of the recent fermion mass

and mixing data [16 – 24]. In general GUT models do not provide a full understanding

of the observed pattern of quark and lepton masses and mixings. In particular, without

other assumptions there is usually no explanation of the observed quark and lepton mass

hierarchies, spanning the three families. Although the question of the fermion mass hier-

archy has been qualitatively addressed in approaches based on higher dimensional orbifold

GUTs (c.f. for instance [25 – 32] and references therein) in which the smallness of the first

and second family masses are traced back to their location in the extra dimensions, see for

instance [31, 33 – 38], these constructions do not provide any understanding of the origin of

the small Cabibbo-Kobayashi-Maskawa (CKM) quark sector mixing together with the ob-

served bi-large mixing in the lepton sector. Some GUT models also include extra (global or

local) Family Symmetry, spontaneously broken by flavon VEVs, in order to provide a more

predictive framework [39]. The extra Family Symmetry acting nontrivially among differ-

ent flavours across the SM matter families provides additional constraints on the Yukawa

textures. The problem of quark and lepton mixing patterns has been recently addressed

in models based on extra continuous Family Symmetries like U(1) [40 – 45], SU(2) [46, 47],

SU(3) [48, 49], SO(3) [50, 51] or discrete subgroups of continuos symmetries like for instance

D5 [52], D4 [53], D3 [54, 55], S4 [56], A4 [57].

One of the challenges facing such GUT and Family Symmetry models is to provide a

convincing explanation of the observed (approximate) tri-bimaximal lepton mixing, corre-

sponding to a maximal atmospheric angle tan θ23 ≈ 1, a zero reactor angle θ13 ≈ 0 and

a solar angle sin θ12 ≈ 1/
√

3 [58]. The possibility that the tri-bimaximal neutrino mixing

matrix involves square roots of simple ratios motivates models in which the mixing angles

are independent of the mass eigenvalues. One such class of models are see-saw models

with sequential dominance of right-handed neutrinos [59 – 62]. In sequential dominance, a

neutrino mass hierarchy is shown to result from having one of the right-handed neutrinos

give the dominant contribution to the see-saw mechanism, while a second right-handed

neutrino gives the leading sub-dominant contribution, leading to a neutrino mass matrix

with naturally small determinant. In a basis where the right-handed neutrino mass ma-

trix and the charged lepton mass matrix are diagonal, the atmospheric and solar neutrino
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mixing angles are determined in terms of ratios of Yukawa couplings involving the domi-

nant and subdominant right-handed neutrinos, respectively. If these Yukawa couplings are

simply related in some way, then it is possible for simple neutrino mixing angle relations,

such as appear in tri-bimaximal neutrino mixing, to emerge in a simple and natural way,

independently of the neutrino mass eigenvalues. Specifically, if the dominant right-handed

neutrino couples equally to the second and third family, with a zero coupling to the first

family, then this will result in a maximal atmospheric mixing angle tan θ23 ≈ 1. If the lead-

ing subdominant right-handed neutrino couples equally to all three families, and if these

couplings are orthogonal to the couplings of the dominant right-handed neutrino, then this

will result in a tri-bimaximal solar neutrino mixing angle sin θ12 ≈ 1/
√

3, and a zero reac-

tor angle θ13 ≈ 0, assuming that the third right-handed neutrino is completely decoupled

from the see-saw mechanism. This is called constrained sequential dominance (CSD) [63].

In realistic models there will be corrections to tri-bimaximal mixing from charged lepton

mixing, resulting in testable predictions and sum rules for lepton mixing angles [63, 64].

In order to achieve the CSD Yukawa relations it seems to be necessary to introduce a

non-Abelian horizontal Family Symmetry spanning the three families. The Family Symme-

try is then broken by flavons, and effective Yukawa operators may be constructed where the

aligned flavon VEVs provide the required CSD relations between the Yukawa couplings.

This strategy has been followed for models based on the Family Symmetry SO(3) [63],

SU(3) [65], or their discrete subgroups [66, 67] (see also [68]). The choice of SU(3), or a

discrete subgroup of it such as ∆(27) [67], has the advantage that it enables both the left

and right handed chiral fermions to both transform under the Family Symmetry as triplets,

permitting unification into a single SU(3) × SO(10) multiplet (3, 16). The lowest order ef-

fective Yukawa operators for SU(3) must then involve a minimum of two anti-triplet flavon

insertions. The choice of SO(3), or a discrete subgroup of it such as A4 [66], requires that

only one type of chiral fermion transform under the Family Symmetry, while the other type

is a family singlet, in order to avoid trivial Family Symmetry contractions. The disadvan-

tage is that it seems to not allow a similar unification into a single SO(3)×SO(10) multiplet

(3, 16), however it has the advantage that the lowest order effective Yukawa operators for

SO(3) involve only one triplet flavon insertion, and are therefore simpler. However, in

practice, this advantage has so far not been exploited since the lowest order effective oper-

ator has only been used for the largest Yukawa coupling associated with the third family,

while the operators associated with the first and second family were assumed to involve

three flavons, in order to account for the required suppression, where the resulting scheme

required large additional symmetries [63].

In the present paper we shall exploit the simplicity of SO(3) by assigning to all three

families effective Yukawa operators involving just single flavon insertions in the Dirac sector.

We assume that there are essentially two types of flavons, one type which develops large

VEV and may be used to describe the third family, and a second type which develops a

small VEV and will be assigned to the lighter families. In our approach the main role of the

horizontal symmetry (realized at the quantum level in terms of extra interactions of matter

with relevant flavon fields) is to explain the correlations among the Yukawa entries rather

than their hierarchy, which is accounted for by the small flavon VEVs. Since the flavons
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enter the effective operators at the lowest possible level, this allows us to reduce the usually

cumbersome extra symmetries considerably, as there is no need to suppress wide classes of

effective operators up to high order in the number of flavon insertions. The resulting relative

simplicity of the flavon sector encourages us to go beyond the effective non-renormalizable

Yukawa operator description in [63, 65 – 67] and construct explicitly the renormalizable

messenger sector, leading to an ultraviolet completion of the model. The messenger sector

allows for effectively different expansion parameters in the different charged sectors, and

the effective Yukawa and Majorana matrices are then constructed. We perform a numerical

analysis which shows that the model provides an excellent fit to the charged fermion mass

spectrum. The model also predicts approximate tri-bimaximal lepton mixing via CSD due

to vacuum alignment of flavon VEVs, with calculable deviations described by the neutrino

sum rule. The strong hierarchy in the charged fermion sector gets cancelled in the neutrino

sector, via the see-saw mechanism with sequential dominance, leading to m2 ∼ m3 for the

lowest order neutrino masses, with the mild neutrino hierarchy m2/m3 ∼ 1/5 produced

by higher order corrections necessarily present in the model. Finally we show that the 4d

model here can result from a 5d orbifold GUT model based on SO(3) × SO(10), leading

to a full SO(10) unification of the SO(3) model, and an explanation of the small flavon

VEV responsible for the fermion mass hierarchy in terms of bulk volume suppression. The

synthesis of non-Abelian Family Symmetry with orbifold GUTs provides an attractive way

of simplifying the Yukawa operators required by explaining the fermion mass hierarchy

in terms of a single suppressed flavon VEV rather than a higher order operator. Such

a simplification of the Yukawa operators at the non-renormalizable level is instrumental

in allowing us to provide the ultraviolet completion of the model in terms of an explicit

messenger sector.

The layout of the remainder of the paper is as follows. In section II we discuss the

4d model at the effective operator level, specifying the symmetry and field content of the

model, and performing a full operator analysis of the effective Dirac and Majorana oper-

ators. We show that it leads to approximate tri-bimaximal lepton mixing and a normal

neutrino mass hierarchy. In section III we discuss the complete 4d model including the

messenger sector responsible for the effective operators. In section IV we perform a numer-

ical analysis of the model, where we show that the parameters of the model can provide a

successful fit for the quark masses and mixings using the charged lepton masses as inputs.

In section V we discuss the embedding of the model into a 5d SO(3) × SO(10) orbifold

GUT model, in which small flavon VEVs can be accounted for by volume suppression, and

the full SO(10) unification of the model is manifested. section VI concludes the paper.

2. The 4d effective non-renormalizable model

2.1 The symmetry

We work in a class of supersymmetric Pati-Salam models based on the gauge symmetry

group SU(4)⊗SU(2)L⊗SU(2)R, which is supposed to be spontaneously broken at some high

scale MG (typically & 1015 GeV) to the ordinary SU(3)c ⊗ SU(2)L ⊗U(1)Y of the minimal

supersymmetric standard model (MSSM). Though this is not a fully unified description of
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both the strong and electroweak interactions (just as the Standard Model does not fully

unify the electromagnetic and weak nuclear force), this structure is liberal enough to let

the left-handed matter fields transform nontrivially under the horizontal SO(3) unlike the

right-handed SM fermions (that are SO(3) singlets,1) while still rigid enough to give rise

to a set of nontrivial correlations among the quark and lepton Yukawa couplings. The

horizontal SO(3) is a gauged Family Symmetry while the extra U(1) ⊗ Z2 factors are

supposed to be approximate2 global symmetries of the model at the Pati-Salam level. We

expect these symmetries to be broken spontaneously by the VEVs of a set of flavon fields

transforming trivially under the gauge symmetry.3

2.2 The field content

We assume the minimal Pati-Salam matter content and let the left-handed matter fermions

(transforming like (4, 2, 1) under SU(4) ⊗ SU(2)L ⊗ SU(2)R) denoted by ~F form a triplet

under the SO(3) flavour symmetry, while the right-handed components F c
1 , F c

2 and F c
3

(behaving like (4, 1, 2) under the PS symmetry) are supposed to be SO(3) singlets. There

is one copy of the Higgs bidoublet driving the SM spontaneous symmetry breakdown and

a pair of Higgs fields (denoted by H ⊕H and H ′ ⊕H ′) responsible for the proper breaking

of the PS symmetry and the Majorana masses of neutrinos. Last, there is an extra Higgs

field Σ transforming as (15, 1, 3) of Pati-Salam symmetry that gives rise to the desired

Georgi-Jarlskog [69] Clebsch factors in the charged matter sector while keeping the effective

neutrino Dirac Yukawa couplings intact.

Concerning the flavon sector, we follow the generic construction in [63]. Since the

model will involve a minimal number of flavon insertions, their extra charges are chosen

to be opposite to those of F c
1 , F c

2 and F c
3 so that a particular flavon is associated with a

particular column of the Yukawa matrix, at lowest order. The full set of the effective theory

matter, Higgs and flavon fields and their transformation properties are given in table 1.

With all this information at hand, one can easily infer the shape of the lowest level

effective operators allowed by the gauge and extra symmetries. Let us start with the Dirac

Yukawa texture, that exhibit the effects of the SO(3) horizontal symmetry in its full glory,

in particular in the neutrino sector.

2.3 The Dirac sector

The main feature of our construction is the simplicity of the leading effective operators

(responsible in particular for the desired tri-bimaximal structure of the neutrino Dirac and

Majorana Yukawa matrices, c.f. section 2.4), in particular the fact that they all emerge

1This choice leads to the typical correlations among entries in columns of the relevant Dirac Yukawa

matrices (in LR notation), just in a way it is expected in a class of lepton sector models with sequential

dominance.
2This is there namely to avoid problems with Goldstone bosons and/or topological defects below the

extra symmetry breakdown scale.
3Thus keeping the GUT-like gauge coupling convergence intact. (However, there is no need to demand

an exact SU(5) or SO(10)-like gauge coupling unification here as SU(4)⊗ SU(2)L ⊗ SU(2)R is not a simple

group.)
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field SU(4) ⊗ SU(2)L ⊗ SU(2)R SO(3) U(1) Z2

~F (4, 2, 1) 3 0 +

F c
1 (4, 1, 2) 1 +2 −

F c
2 (4, 1, 2) 1 +1 +

F c
3 (4, 1, 2) 1 −3 −

h (1, 2, 2) 1 0 +

H, H (4, 1, 2), (4, 1, 2) 1 ±3 +

H ′, H ′ (4, 1, 2), (4, 1, 2) 1 ∓3 +

Σ (15, 1, 3) 1 -1 −
~φ3 (1, 1, 1) 3 +3 −
~φ23 (1, 1, 1) 3 −2 −
~φ123 (1, 1, 1) 3 −1 +

~φ12 (1, 1, 1) 3 0 +
~̃
φ23 (1, 1, 1) 3 0 −

Table 1: The basic Higgs, matter and flavon content of the model.

at one flavon insertion level, with all the advantages over the former constructions (the

simplicity of the extra symmetries and the would-be Froggatt-Nielsen messenger sector):

W leading
Y =

1

M
y23

~F .~φ23F
c
1h +

1

M
y123

~F .~φ123F
c
2h +

1

M
y3

~F .~φ3F
c
3h + . . . (2.1)

where M stands for the masses of the relevant Froggatt-Nielsen messenger fields while the

ellipsis covers the subleading terms necessary for the proper description of the quark sector

details (hierarchies and the CKM mixing parameters, the first generation masses etc.):

W subl.
Y =

1

M2
yGJ

~F .
~̃
φ23F

c
2Σh +

1

M2
y12

~F .(~φ3 × ~φ12)F
c
3h +

1

M3
ỹ23

~F .
~̃
φ23(~φ3.

~̃
φ23)F

c
3 h + . . .

(2.2)

As we claimed before, we exploit the SO(3) horizontal symmetry to understand the cor-

relations among the various Yukawa entries rather than their exact hierarchy.4 Instead,

we equip some of the flavon and Higgs VEVs with extra suppression factors (with respect

to their natural values dictated by the relevant symmetry breaking scales) and let these

factors tell their favorite values just upon fitting all the quark and lepton data. Remarkably

enough, there is an option to connect all of them to just one universal suppression scale,

that could find a natural justification for instance in higher-dimensional constructions.

As an example, consider the CSD structure of the neutrino Dirac Yukawa matrix Y ν

emerging from eqs. (2.1)–(2.2) (for further details see also formula (2.7)). The lepton

mixing data do not specify the overall magnitudes of its first and second columns, only

4As a matter of fact, such attempts are questionable indeed, because to understand hierarchies an extra

symmetry does not help much unless a scale at which it becomes broken is specified, i.e. there is always an

extra ingredient needed to accomplish such a goal.
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the correlations among their entries. This is precisely where the horizontal symmetry is

supposed to play an important role. Only after its embedding into a (partially) unified

framework like the Pati-Salam gauge model, their correlations with the quark sector Dirac

Yukawa couplings trigger the need of a particular suppression of the first and second column

entries with respect to the third column ones.

Thus, it is quite natural to let these two requirements of intrinsically different origins be

justified from two different sources like we propose here – the SO(3) symmetry shall govern

the rescaling-invariant quantities like the lepton mixing angles (in seesaw-type models)

while the charged matter sector hierarchies emerge from the suppression of the flavon

VEVs 〈φ23〉, 〈φ123〉 and 〈φ12〉 (and similarly for H ′ Higgs field). We let these VEVs (driven

by naturalness to roughly the same order of magnitude corresponding to the scale of the

SO(3) (and Pati-Salam) symmetry breaking, at least if it is one-step) be suppressed by

extra factors called δ23, δ123 and δ12 with respect to the VEV of φ3, namely:

| 〈φ123〉 | ∼ δ123| 〈φ3〉 |, | 〈φ23〉 | ∼ δ23| 〈φ3〉 | and | 〈φ12〉 | ∼ δ12| 〈φ3〉 | (2.3)

As we shall see later in section 5 all these suppression factors can be justified in terms of

a universal suppression factor δ coming from extra dimensional dynamics. Note that we

keep the VEV of the “Georgi-Jarlskog” flavon φ̃23 at the natural scale |
〈

φ̃23

〉

| ∼ | 〈φ3〉 |
and let the slight suppression of the second generation masses come from the higher level

nature of the relevant effective operator in eq. (2.2).

In a similar manner, the Majorana sector structure shall be affected by the requirement

of having the VEV of H ′ well below the VEV of H, namely

|
〈

H ′
〉

| ∼ δH | 〈H〉 |. (2.4)

The alignment of the flavon VEVs will be assumed to be given by [63]:

〈φ3〉T ∝ (0, 0, 1), 〈φ23〉T ∝ (0, 1,−1), 〈φ̃23〉T ∝ (0, 1, 1), 〈φ123〉T ∝ (1, 1, 1), 〈φ12〉T ∝ (1, 1, 0)

(2.5)

and will not be discussed further here.

After the appropriate flavour symmetry breaking this structure gives rise to the Dirac

mass matrices like (in an obvious symbolic LR notation):

Y f
LR =







0 y123ε
f
123 y12ε

f
12ε

f
3

y23ε
f
23 y123ε

f
123 + CfyGJ ε̃f

23σ ỹ23(ε̃23)
2ε3

−y23ε
f
23 y123ε

f
123 + CfyGJ ε̃f

23σ y3ε
f
3






(2.6)

where Cf = −2, 0, 1, 3 for f = u, ν, d, e are the traditional Clebsch-Gordon coefficients

responsible for the distinct charged sector hierarchies, σ denotes the (normalized) VEV of

the Georgi-Jarlskog field σ ≡ 〈Σ〉/Mf and εf
x stands for the various flavon VEV factors

〈φx〉/Mf .

Note that the choice of the Σ field giving rise to the desired Georgi-Jarlskog Clebsch

factor in the charged sector Yukawas Y e,u,d is practically unique. Since we need to preserve

the tight CSD homogeneity of the second column of the neutrino dirac mass matrix, the
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effect of the Σ VEV should be strongly suppressed in Y ν by the relevant Clebsch factor

of Σ VEV in the neutrino direction. Then, Σ transforming like (15, 1, 3) under SU(4)C ⊗
SU(2)R ⊗ SU(2)L is the simplest choice that can satisfy this requirement.

2.4 The Majorana neutrino sector

Assuming the vacuum alignment as in the previous subsection, the neutrino Yukawa matrix

takes the form:

Y ν
LR =







0 y123ε
ν
123 y12ε

ν
12ε

ν
3

y23ε
ν
23 y123ε

ν
123 ỹ23(ε̃

ν
23)

2εν
3

−y23ε
ν
23 y123ε

ν
123 y′3ε

l
3 + y3ε

ν
3






(2.7)

Assuming that the right-handed neutrino associated with the first column gives the dom-

inant contribution to the see-saw mechanism, the second right-handed neutrino gives the

leading subdominant contribution, and the third column gives the smallest contribution,

then this form of neutrino Yukawa matrix corresponds to constrained sequential dominance

(CSD), and will lead to tri-bimaximal lepton mixing as discussed in [63].

The Majorana right-handed neutrino mass matrix must be approximately diagonal, so

as not to lead to significant corrections to the Yukawa matrix in the diagonal right-handed

neutrino mass basis, and in addition it must be sufficiently hierarchical to ensure that

the right-handed neutrinos dominate sequentially as described above. The (leading order)

structure of the neutrino Majorana mass matrix is triggered by the choice of the U(1)×Z2

charges of the heavy Higgs fields H and H ′. Assuming the hierarchy among the VEVs

of the flavon and Higgs fields given by eqs. (2.3)–(2.4) the lowest level effective operators

allowed by the extra symmetries are:

W lead.
M =

1

M3
ν

w1F
c
1

2HH ′φ2
23 +

1

M3
ν

w2F
c
2

2HH ′φ2
123 +

1

Mν
w3F

c
3

2H2 + . . . (2.8)

Assuming the relevant messengers to be the same as for the Dirac neutrino sector (see

later) these terms generate a diagonal Majorana mass matrix

Mν
RR = diag(w1ε

ν
23

2δH , w2ε
ν
123

2δH , w3)M3

where as before εν
x denotes 〈φx〉/M . The see-saw formula mν = Y ν

LRMν
RR

−1Y ν
LR

T v2 leads to

three contributions to the light neutrino mass matrix, from each of the three right-handed

neutrinos, the first and second of order δ−1
H v2/M3, and the third of order εl

3

2
v2/M3. With

sufficiently small δH the third right-handed neutrino becomes decoupled and irrelevant for

the see-saw mechanism. Such a simple Majorana structure has several noteworthy features.

In particular, the would-be δ-suppressions associated to the φ23 and φ123 VEVs entering

the Dirac neutrino Yukawa through the leading operators given in eq. (2.1) is cancelled in

the seesaw formula by the suppression factors present in Mν
RR. The εν

x suppression factors

similarly cancel, leading to m2 ∼ m3, in contrast to the strong hierarchy in the charged

matter spectra. Note, however, that m1 ¿ m2.

The above see-saw cancellations, though welcome from the point of view of making

the hierarchy between m2 and m3 mild, are apparently too efficient and at leading order
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lead to no hierarchy at all, m2 ∼ m3. However, apart from the leading terms given above,

the extra symmetries allow for many subleading terms, for instance:5

W subl.
M =

w4

M4
F c

1
2H ′H ′(~φ3 × ~φ123).

~̃
φ23 +

w5

M4
F c

2
2HH ′(~φ23 × ~φ12).

~̃
φ23 + (2.9)

+
w6

M5
F c

2
2H ′H ′(~φ3.~φ23)(~φ3.

~̃φ23) +
w7

M4
F c

1F c
2HH ′(~φ23 × ~φ123).~φ12+

+
w8

M5
F c

1F c
2H ′H ′(~φ3.

~̃
φ23)(

~φ12.
~̃
φ23) +

w9

M4
F c

1F c
3HH ′(~φ3 × ~φ23).~φ12+

+
w10

M6
F c

2F c
3HH(~φ123 × ~φ23).

~̃
φ23(

~̃
φ23.~φ123) +

w11

M6
F c

2F c
3HH ′(~φ3 × ~φ23).

~̃
φ23(~φ23.~φ3) + . . .

With this information at hand the structure of the Majorana mass matrix reads6

Mν
RR =







O(εν2
23δH , εν

123ε̃
ν
23ε

ν
3δ2

H) O(εν
123ε

ν
23ε

ν
12δH , εν

12ε
ν
3 ε̃ν2

23δ2
H) O(εν

3ε
ν
23ε

ν
12δH)

. O(εν2
123δH , εν

12ε
ν
23ε̃

ν
23δH , . . .) O(εν2

123ε
ν
23ε̃

ν2
23 , . . .)

. . O(1)







〈H〉2
M

(2.10)

Assuming δ123 ∼ δ23 ∼ δ12 ∼ δH ≡ δ (leading to εν
123 ∼ εν

23 ∼ εν
12 ∼ δεν

3 ∼ δε̃ν
23, c.f.

formula (2.3)) the lepton mixing angles emerging from the Majorana sector are:

θRR
12 ∼ O(ε̃ν2

23), θRR
13 ∼ O(δ3εν

3), θRR
23 ∼ O(δ3εν

3 ε̃ν
23) (2.11)

Since εν
3 ∼ ε̃ν

23 ¿ 1 (see section 3.4) we find that these angles are small enough not to

disturb the required CSD Dirac sector correlations significantly, which would spoil the

tri-bimaximal prediction. However the beneficial consequence of the effective operators is

that one has enough room to smear the unwanted degeneracy of the first and second heavy

Majorana masses restoring the validity of the second CSD hierarchy condition [63], leading

to m2/m3 ∼ 1/5 by a suitable choice of parameters.

3. The 4d renormalizable model

3.1 The messenger sector

We now present a renormalizable 4d theory which gives rise to the effective nonrenormal-

izable operators of the previous section. The effective non-renormalizable operators will

arise from the exchange of heavy messenger fields. In this subsection we shall describe the

messenger sector responsible for the effective Dirac operators. Note that the construction

of the full model at the renormalizable level is greatly facilitated by the simplicity of the

model at the effective operator level, in particular the fact that the simplest operators

correspond to the insertion of only one flavon.

At the level of one flavon insertion operators dominating the Dirac Yukawa structures

there are in principle two distinct classes of Froggatt-Nielsen operators behind, namely:

5Here we typically omit the allowed SO(3) contractions that drop out in the mass matrix because of the

orthogonality of the relevant flavon VEVs, for instance 1

M5 F c
2

2H ′H ′~φ2

3(~φ23.
~̃
φ

23
), 1

M3 F c
1 F c

2 H ′H ′~φ3.~φ12 etc.
6Only the leading contributions (in number of suppressions in δH and εν

23, εν
123 and εν

12) are displayed.
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field SU(4) ⊗ SU(2)L ⊗ SU(2)R SO(3) U(1) Z2

χ1, χc
1 (4, 1, 2), (4, 1, 2) 3 0 +

χ̃1, χ̃c
1 (4, 1, 2), (4, 1, 2) 1 0 −

χ2, χc
2 (4, 2, 1), (4, 2, 1) 1 ±3 −

ψ,ψ (10, 1, 3), (10, 1, 3) 1 0 +

Ψ (1, 1, 1) 1 0 −

Table 2: The “level-1” messenger sector of the model responsible for the desired Dirac Yukawa

structures.

type 1 : type 2 :

The main difference between them stems from the position of the flavon and MSSM-

like Higgs doublet insertions determining the transformation properties of the relevant

messenger fields χ1 and χ2. The Pati-Salam quantum numbers of χ1 are (4, 1, 2) while

χ2 transforms as (4, 2, 1). The χ1 messenger is “universal” as it feels only the quantum

numbers of ~F and h while χ2 is “flavon specific”, because it carries the flavon extra charges

(and thus should be called χφ
2 ).

Upon the Pati-Salam spontaneous symmetry breaking the χ1 multiplet splits into four

distinct states (denoted in what follows by superscripts u, d, e, ν) while χφ
2 decays into just

2 states because it does not feel the SU(2)L charges of the quarks and leptons (that is why

it is furnished by only a pair of superscripts q, l). Playing with masses of χu,d,e,ν
1 one affects

uniformly all the linear terms within a specific Yukawa matrix, while adjusting the masses

of χφ;q,l
2 leads to changes of entries generated by the appropriate flavons (the specific χφ

2

is associated to), but without differences between those in the up and down and charged

lepton and neutrino sectors respectively.

Remarkably enough, the minimal set of messengers leading to potentially realistic

quark and lepton Dirac Yukawa textures is very concise, as shown in table 2.

The interactions of the relevant messengers with the matter, flavon and Higgs fields

are given by

Wχ = ~χ1.(yχ1F c
1
φ23

F c
1
~φ23 + yχ1F c

2
φ123

F c
2
~φ123 + yχ1F c

3
φ3

F c
3
~φ3) + yχc

1
Fh

~F .~χc
1h+ (3.1)

+yχ1χc
1
φ12

(~χ1× ~χc
1).

~φ12 +yχ2F c
3
hχ2F

c
3h+yχc

2
Fφ3

~F .~φ3χ
c
2 +yχ̃1χc

1
φ̃23

χ̃1(~χ
c
1.

~̃
φ23)+yχ̃1F c

2
Σχ̃1F

c
2Σ

The internal structure of the lowest level Dirac operators is depicted in figure 1. It

is assumed that there is only one light enough flavon specific messenger of type 2 (c.f.

discussion below formula (3.1)) associated with ~φ3.
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Figure 1: The structure of a typical contributions to the Dirac masses of matter fermions. Since

the χ1 messenger does not “feel” the extra quantum numbers of F c
x and ~φy these topologies are

generic for all the Dirac entries. On the other hand, the U(1) × Z2 charges of the χ2 messenger

dominating the 33 entries are such that it can (at the lowest level) accompany only the ~φ3 flavon.

Moreover, upon SU(4)⊗ SU(2)L ⊗ SU(2)R → SU(3)c ⊗ SU(2)L ⊗U(1)Y it can split only into a pair

of states χq,l
2

giving rise to universal entries in the quark and lepton sectors respectively. However,

in our setup this splitting can not emerge at the lowest level and thus the b− τ Yukawa unification

is preserved up to higher order corrections.

=

Figure 2: The structure of the Georgi-Jarlskog operator leading to the desired Clebsch-Gordon

coefficient in the charged lepton sector giving the proper ms/mµ ratio. Since the projection of 〈Σ〉
in the Y = 0 direction is zero, the tri-bimaximal mixing in the neutrino sector remains unaffected.

The structure of the higher order operators responsible for the Georgi-Jarlskog struc-

ture (requiring an extra type-1 messenger field denoted by χ̃1) and the 1-3 and 2-3 CKM

mixings is shown in figures 2 and 3.

– 11 –



J
H
E
P
1
1
(
2
0
0
6
)
0
7
1

=

=

Figure 3: The leading contributions to the Yukawa 13 and 23 entries emerge automatically due to

the particular χ1 and
~̃
φ23 quantum numbers. The SO(3) indices are contracted so that the leftmost

~̃
φ23 couples to ~F and the

~̃
φ23 flavon on the right saturates the SO(3) index of ~φ3. This is the only

option since χ̃1 is an SO(3) singlet.

3.2 The Yukawa matrices

With the messenger sector specified, we can now return to the Dirac Yukawa matrix struc-

ture in eq. (2.6), and express the separate Yukawa matrices in each charge sector in terms

of the messenger masses. The relevant expressions read (dropping the LR subscript for

simplicity):

Y u =







0 y123ε
u
123 y12ε

u
12ε

u
3

y23ε
u
23 y123ε

u
123 − 2yGJ ε̃u

23σ
u ỹ23(ε̃

u
23)

2εu
3

−y23ε
u
23 y123ε

u
123 − 2yGJ ε̃u

23σ
u y′3ε

q
3 + y3ε

u
3






(3.2)

Y d =







0 y123ε
d
123 y12ε

d
12ε

d
3

y23ε
d
23 y123ε

d
123 + yGJ ε̃d

23σ
d ỹ23(ε̃

d
23)

2εd
3

−y23ε
d
23 y123ε

d
123 + yGJ ε̃d

23σ
d y′3ε

q
3 + y3ε

d
3






(3.3)

Y e =







0 y123ε
e
123 y12ε

e
12ε

e
3

y23ε
e
23 y123ε

e
123 + 3yGJ ε̃e

23σ
e ỹ23(ε̃

e
23)

2εe
3

−y23ε
e
23 y123ε

e
123 + 3yGJ ε̃e

23σ
e y′3ε

l
3 + y3ε

e
3






(3.4)

Y ν =







0 y123ε
ν
123 y12ε

ν
12ε

ν
3

y23ε
ν
23 y123ε

ν
123 ỹ23(ε̃

ν
23)

2εν
3

−y23ε
ν
23 y123ε

ν
123 y′3ε

l
3 + y3ε

ν
3






(3.5)

where we have used the following abbreviations (f stands for u, d, ν and e):

εf
23 ≡

|
〈

~φ23

〉

|
M

χf
1

, εf
123 ≡

|
〈

~φ123

〉

|
M

χf
1

, εf
3 ≡

|
〈

~φ3

〉

|
M

χf
1

, εf
12 ≡

|
〈

~φ12

〉

|
M

χf
1

, ε̃f
23 ≡

|
〈

~̃
φ23

〉

|
M

χf
1

(3.6)
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εq
3 ≡

|
〈

~φ3

〉

|
Mχq

2

, εl
3 ≡

|
〈

~φ3

〉

|
Mχl

2

and σf ≡ | 〈Σ〉 |
M

χf
1

(3.7)

The above effective Yukawa matrices are obtained upon integrating out the heavy

messenger sector, leading to the following relations between the dimensionless couplings:

y23 ≡ yχc
1
Fh yχ1F c

1
φ23

, y123 ≡ yχc
1
Fh yχ1F c

2
φ123

, y3 ≡ yχc
1
Fh yχ1F c

3
φ3

, y′3 ≡ yχ2F c
3
h yχc

2
Fφ3

,

(3.8)

yGJ ≡ yχc
1
Fh yχ̃1χc

1
φ̃23

yχ̃1F c
2
Σ, ỹ23 ≡ yχc

1
Fh y2

χ̃1χc
1
φ̃23

yχ1F c
3
φ3

, y12 ≡ yχc
1
Fh yχ1χc

1
φ12

yχ1F c
3
φ3

3.3 The messenger masses

It is known that the quark masses and mixing angles are well described by the following

textures [70]:

|Y u| ∼







0 ε3 O(ε3)

ε3 ε2 O(ε2)

O(ε3) O(ε2) 1






, |Y d| ∼







0 1.5ε3 0.4ε3

1.5ε3 ε2 1.3ε2

O(ε3) O(ε2) 1






, (3.9)

with ε ∼ 0.05 and ε ∼ 0.15. The charged lepton Yukawa matrix receives a form similar

to the down quark Yukawa matrix, but with a “Georgi-Jarlskog” factor of 3 in the (2, 2)

entry of the charged lepton matrix.

There is clearly a need to generate a sizeable splitting in the spectrum of the χ1-

type messengers, in particular among the components coupled to the up and down matter

sectors. If we intend to reproduce the hierarchies suggested by textures (3.9) the ratio

of the down and up χ1-type messenger masses Mχd
1

/Mχu
1
≡ r should be of the order of

ε̄3/ε3 ∼ O(10−1). Thus, we should make Mχu
1

much heavier than Mχd
1

. Clearly, this is

possible only if the common singlet masses in the superpotential do not dominate the χ1

mass formula, otherwise we get always r → 1. It is also insufficient to split the χ1 by

means of Clebsch-Gordon coefficients of an extra Σ-like Higgs field (in analogy with the

Georgi-Jarlskog mechanism) because |r| in such a case is confined between the minimum

and maximum ratio of the relevant Clebsch-Gordon coefficients (O(1) numbers). Thus, we

need an alternative mechanism giving mass to χu
1 only without touching χd

1.

This goal can be most economically achieved assuming that the underlying dynamics

of the χ1 field is governed by interactions with an extra messenger X that can propagate

the information about the Pati-Salam breaking (triggered by the VEVs of H-fields) to the

up-sector only. Indeed, this is possible if the SU(4)C ⊗SU(2)L ⊗SU(2)R quantum numbers

of X are chosen as (15, 1, 1). In such a case the structure of the SU(2)R contraction in the

relevant operator χc
1X〈H〉 picks up the component of H with nonzero VEV together with

the up-type part of χc
1 (i.e. X corresponds to the diagonal matrix in the 2 ⊗ 2 product of

SU(2)R and thus must be identified with the singlet in 2⊗ 2 = 3⊕ 1). The choice of 15 out

of 4⊗ 4̄ = 15⊕ 1of SU(4)C is then justified by the need to propagate the VEV not only to

the neutrino-like component χνc
1 (as the singlet would obviously do) but also to χuc

1 . This

is illustrated in figure 4.
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Figure 4: The large mass splitting in the χ1 multiplet is achieved by means of a relatively sup-

pressed singlet mass term accompanied by a particular set of “level-2” messengers giving rise to a

mass term for χu,ν
1

only. Since there is no need to split the masses of the χ̃1 multiplet the leading

contribution to its mass can be dominated by the singlet mass term. In principle, one can try to

generate a mass splitting in the χ2 multiplet on similar grounds as for χ1; however, at the lead-

ing level the gauge structure admits only “internal” contractions of the H and H SU(2)R indices

(and similarly, the SU(2)L indices of χ2 and χc
2

must saturate each other) and thus, regardless the

quantum numbers of Y the splitting in the χ2 sector is in general much milder.

Notice that this mechanism is not applicable to the χ2 case as these messengers are

SU(2)R singlets and the SU(2)L symmetry prevents the up and down components from

splitting up to the electroweak scale. This is welcome as the exchange of χ2 is assumed to

be the source of the universal 33 entries in the Yukawa sector. On the other hand, one can

split the masses of its quark-like and lepton-like components χq
2 and χl

2, but this requires a

messenger (Y ) carrying both SU(2)L as well as SU(2)R doublet indices. Moreover, to get

mτ slightly bigger than mb this calls for Mχl
2

< Mχq
2

which can be achieved only if Y is

not an SU(4)C singlet (otherwise the lepton part is picked up by the VEVs of H and H̄).

Thus, to achieve such a splitting at the lowest effective operator order one must make use

of higher Pati-Salam representations that seem disfavoured by strings. Thus, sticking to

small multiplets such an effect is expected to arise from higher order operators justifying

the mildness of the GUT-scale b − τ mass splitting.

Last note concerns the splitting in the χ̃1 messenger multiplet. We shall see in section 4

that the numerical fit is perfectly compatible with Mχ̃u
1
∼ Mχ̃d

1

∼ Mχ̃e
1

and thus there is no
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field SU(4) ⊗ SU(2)L ⊗ SU(2)R SO(3) U(1) Z2

X, Xc (15, 1, 1) 3 ∓3 +

Y , Y c (15, 2, 2) 1 0 −

Table 3: A sample “level-2” messenger sector giving rise to the desired level-1 Dirac sector mes-

senger mass splitting Mχu
1
À Mχd

1

, Mχl
2

& Mχ
q
2
.

need to generate a mass splitting within this sector. In other words, we assume the masses

of χ̃1 components to be dominated by the explicit mass term in the superpotential.

3.4 The Majorana messenger sector

Concerning the Majorana mass terms given in eqs. (2.8)–(2.9), we do not enter a full

analysis of the messenger sector here. The reason is that in the Majorana case there is no

need to adjust the messenger masses in any particular way like in the Dirac sector, it is just

enough to ensure a mild hierarchy of the light Majorana masses, that could be obtained

in many different ways (c.f. the “richness” of the set of subleading operators given by

formula (2.9)).

We therefore restrict our discussion here to the universal leading operators governing

the diagonal entries of the mass matrix7 (2.10). Their Froggatt-Nielsen structure is depicted

in figure 5. We employ a pair of extra messengers ψ and Ψ with the quantum numbers given

in table 2. Notice that the structure of these graphs is such that the Dirac sector hierarchy

associated with the ~φ23 and ~φ123 VEVs is effectively cancelled in the seesaw formula by the

Majorana masses, and thus the light neutrino mass splitting is given by m2 ∼ m3 at lowest

order. This cancellation which was anticipated in section 2.4 was based on the assumption

of equal expansion parameters in the Dirac and Majorana sectors. This assumption has

now been verified, since we have seen here that the explicit messenger sector is common

to both the Dirac and Majorana sector. Moreover, due to the presence of the heavy χν
1

messenger obeying Mχν
1
∼ Mχu

1
À M

χd,e
1

there is a further suppression in the effective

values of the neutrino εν
x factors as in the up-sector case, εν,u

x ∼ rεe,d
x .

To ensure the proper splitting between the first and second right-handed neutrino

masses one can employ extra messenger fields to construct similar diagrams for the other

terms allowed by symmetries, c.f. eq. (2.9).

4. Numerical analysis: a sample χ
2 fit

At this point, all the ingredients are fully specified and we can approach the fit of the quark

masses and CKM mixing parameters, using the charged lepton masses as inputs.8

7The choice of quantum numbers of the messenger ψ is driven by simplicity, i.e. the need to pick up

symmetric combinations from 4 ⊗ 4 of SU(4)C and 2 ⊗ 2 of SU(2)R. Otherwise, the vertex with a pair of

identical χν
1 vanishes.

8As we have already shown the neutrino sector automatically leads to a tri-bimaximal mixing so we do

not include the lepton mixing parameters into the χ2 analysis.
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Figure 5: The basic lowest level (in number of extra suppressions carried by the VEVs of φ23,

φ123,. . . flavons ) effective operators contributing to the Majorana mass matrix in the neutrino

sector. Note that there is no “mixed” term built up from the “halves” of the first and second

graphs as the VEVs of φ23 and φ123 are orthogonal.

For the purposes of the numerical fit, it is convenient to introduce the parameters

y′3ε
q
3 = z, aδz ≡ y23ε

d
23, bδz ≡ y123ε

d
123, cz ≡ yGJ ε̃d

23σ
d, dz ≡ y3ε

d
3, ez ≡ ỹ23(ε̃

d
23)

2εd
3

and fδz ≡ y12ε
d
12ε

d
3. In terms of these parameters the charged sector Yukawa matrices in

eqs. (3.2)–(3.4) can be expressed as:

Y d =







0 bδ fδ

aδ bδ + c e

−aδ bδ + c d + 1






z (4.1)

Y u =







0 bδr fδr2

aδr bδr − 2crr̃ er2r̃

−aδr bδr − 2crr̃ dr + 1






z (4.2)

Y e =







0 bδs fδs2

aδs bδs + 3css̃ es2s̃

−aδs bδs + 3css̃ ds + t






z (4.3)

where

r ≡
Mχd

1

Mχu
1

, r̃ ≡
Mχ̃d

1

Mχ̃u
1

, s ≡
Mχd

1

Mχe
1

, s̃ ≡
Mχ̃d

1

Mχ̃e
1

, t ≡
Mχq

2

Mχl
2

. (4.4)
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The properly normalized mass matrices are then given by

Mu =
1√
2
Y uv sinβ ≡ (Y u/z)m, Md,l =

1√
2
Y d,lv cos β ≡ (Y d,l/z)

m

tan β
(4.5)

where
√

2m ≡ vu(MG)z stands for the single weak-scale dimensionfull parameter entering

the numerical procedure. This parametrization is particularly convenient because of the

possibility to get the optimum value of m (or equivalently z) analytically.

Regarding the number of input parameters used in the fit, we see from eqs. (4.1)-(4.3)

that there are a total of 17 as follows: 11 from the 6 complex numbers 9 a, b, c, d, e, f plus

6 real numbers δ, z, r, s, t, tan β(MG). This is generically10 the same as the number of

quark and lepton sector observables (17 - the charged sector masses, CKM mixing angles

and phase, tan β(MZ) plus the lepton sector mixing angles). It is important to note that

a “natural” fit (with all the dimensionless quantities having values around 1) is highly

nontrivial, and the fact that we achieve this can be regarded as a success of the model.

We now consider a numerical determination of the values of the parameters defined

above, subject to the following theoretical requirements. First we require all the unsup-

pressed parameters (i.e. all up to εd
23, εd

123 and εd
12) to fall in the natural O(1) domain.

Next, the fit is obtained under the assumption that there is only a single parameter δ

governing all the ad-hoc suppressed quantities εd
23, εd

123 and εd
12, i.e. εd

23,123,12 ∝ O(1) × δ.

In accord with the messenger sector dynamics we let r (c.f. section 3.3) depart from 1 (we

have already seen that its preferred value in order to reproduce the textures (3.9) is in the

r ∼ O(10−1) range) but keep all the other messenger mass ratios around 1.

To obtain the desired Yukawa pattern as in eq. (3.9) (assuming y′3ε
q
3 = z ∼ 1 and

keeping all the Yukawa couplings at O(1) level) one can estimate the magnitude of the

extra suppression factors δ23,123 in εd
23 and εd

123 to be about εd
23 ∼ εd

123 ∼ 0.003. To make

this suppression potentially natural (i.e. universal), also the small extra factor in the VEV

of φ12 should have roughly the same value and we should assume εd
12 ∼ 0.003 as well. Is

this compatible with the physical value of the 1-3 CKM mixing angle ? Notice that with

r ¿ 1 the 13 term in the up Yukawa matrix is strongly suppressed and θq
13 comes entirely

from the down sector. Thus, θq
13 ∼ 0.003 is obtained in a completely natural way provided

|y12ε
d
3| ∼ 1, that corresponds to our assumption of no extra suppression factor in the φ3

VEV.

The results of the numerical fit, subject to the above theoretical requirements, are

displayed in tables 4 and 5. In performing this we took the input data at the GUT scale

from [71] (slightly updated in view of some of the recent light quark sector changes indicated

in [72]). The input data depend strongly on the value of tanβ and since the present setup

strongly favours the large tan β regime we take tan β(MZ) = 55. It is well known that

in such a case there are potentially large radiative corrections to the down-type quark

9As a matter of fact, the phase of a does not matter at the leading order, see also the note in the caption

of table 4.
10In principle the number of input parameters could be reduced further, for example due to the proximity

of s to 1 in table 4 in the “case 2” fit corresponding to the common dynamical origin of the masses of χd
1

and χe
1.
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parameters values (case 1) values (case 2)

δ 2.910 × 10−3 3.153 × 10−3

|a| φa 3.805 0 1.17 π

|b| φb 2.262 3.344 0.759 2.406

|c| φc 0.045 0.206 0.014 1.655

|d| φd 1.330 0.053 0.021 2.108

|e| φe 0.086 0.274 0.035 0.905

|f | φf 2.284 1.529 1.029 5.892

m (or z) 55.97 (or 0.672) 88.79 (or 1.066)

r 0.040 0.087

r̃ 1 1

s 0.696 1.013

s̃ 1 1

t 0.971 0.977

tan β(MG) 64.96 52.64

Table 4: The sample sets of input parameters corresponding to the fits of the quark and lepton

sector measurables given in table 5. φa, . . . , φf are the phases of the complex parameters a, . . . , f .

Notice the irrelevance of the phase of a which affects only the first columns of the relevant Yukawa

matrices and thus can be rotated away. Note also that the smallness of |c| and |e| is natural because

of their higher order effective operator origin. Concerning the value of d in “case 2”, this can be

natural provided all the χ1 messengers are somewhat heavier than χ2 and the would-be suppression

in the other χ1-driven Yukawa entries is redistributed into δ, χ̃1 masses, flavon VEVs and the

couplings in the underlying theory. In other words, small |d| is an issue of reparametrization rather

than naturalness.

masses, in particular mb, which can reach up to order 50% or even more. Unfortunately,

the analysis [71] does not take most of these important radiative corrections into account.

Thus, a detailed analysis including these effects, which strongly depend on the precise

details of the SUSY spectrum, would be required in order to provide a more accurate fit

to the data. This is beyond the scope of the current paper.

It can be easily checked that a good fit of the quark and charged lepton data can be

obtained for instance for the values of the relevant parameters given in table 4. These

sample solutions give relatively good fits of all the quark and lepton sector observables (c.f.

table 5) and lead to the following Yukawa hierarchies at the unification scale (for “case 1”

and “case 2” parameter sets respectively):

|Y d|/z ≈







0 0.0066 0.0066

0.0110 0.0382 0.0858

0.0110 0.0382 2.329






,







0 0.0024 0.0032

0.0037 0.0162 0.0349

0.0037 0.0162 0.9896






(4.6)
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Observables (evolved to MG) case 1 case 2

quantity input fit pull (σ) fit pull (σ)

mu [MeV] 0.55 ± 0.25 1.67 +4.46 0.55 ×
mc [MeV] 210+15

−21 215 +0.28 212.0 +0.08

mt [GeV] 95+69
−21 58.9 −1.75 88.70 −0.31

md [MeV] 1.23 ± 0.41 1.66 +1.06 0.93 −0.73

ms [MeV] 21.6 ± 5.2 33.7 +2.32 27.77 +1.19

mb [GeV] 1.42+0.48
−0.19 2.01 +1.23 1.67 +0.52

me [MeV] 0.357 0.357 × 0.357 ×
mµ [MeV] 75.29 75.29 × 75.29 ×
mτ [GeV] 1.63 1.63 × 1.63 ×
sin θCKM

12 0.2243 ± 0.0016 0.2273 +1.93 0.2248 +0.33

sin θCKM
23 0.0351 ± 0.0013 0.0369 +1.38 0.0351 +0.01

sin θCKM
13 0.0032 ± 0.0005 0.0032 −0.04 0.0031 −0.08

δCKM 60◦ ± 14◦ 59.6o −0.03 59.7o −0.02

tan β(MG) 52.1+4.3
−16.5 64.9 +2.1 52.64 +0.13

Sample χ2 fit Total χ2: 41.09 Total χ2: 2.45

Table 5: The GUT-scale input values and a sample χ2-fit of the quark and charged lepton masses

and the CKM mixing parameters. The inputs correspond to the large tan β(MZ) = 55 regime at

the MSSM scale ∼ 1TeV (for further details see the notes in the text). In “case 1” the analysis is

performed at the leading order in the number of flavon insertions, which leads to small deviations

in the first generation masses governing the total χ2 function. The second column (“case 2”) gives

an example of a very good fit in case of a tiny subleading entries ∼ O(10−5) potentially arising

at next-to-leading order. Due to Mχd
1

∼ Mχe
1

this solution also corresponds to a regime with a

simplified messenger sector dynamics; for details see the text and table 4.

|Y u|/z ≈







0 0.0002 0

0.0004 0.0038 0.0001

0.0004 0.0038 1.0528






,







0 0.0002 0

0.0003 0.0023 0.0003

0.0003 0.0023 0.9991






(4.7)

|Y e|/z ≈







0 0.0046 0.0032

0.0077 0.0889 0.0416

0.0077 0.0889 1.8960






,







0 0.0024 0.0033

0.0038 0.0455 0.0358

0.0038 0.0455 0.9666






(4.8)

One can verify easily that the portion of the lepton mixing coming from the charged lepton

Yukawa is negligible. Moreover, the Cabibbo mixing emerges predominantly from the

down-type Yukawa à la Gatto et al. [73] which is welcome.

Remarkably enough, more than 60% of the total χ2 of this sample fit comes from the

light (u, d, s) masses that are quite sensitive to the subleading corrections. The potentially

dramatic effect of these contributions can be appreciated in “case 2” fit. Indeed, even as tiny

as order 10−5 corrections to the Yukawa matrices above allow for a dramatic improvement
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of the χ2 value, c.f. table 5, “case 2”.11 Recall that such extra factors emerge in a natural

way from higher order effective operators like for instance

W h.o. = ya
1

M2
~F .(~φ23 × ~φ12)F

c
1 h + yb

1

M3
~F .(~̃φ23 × ~φ12)F

c
2Σh + . . . (4.9)

Moreover, since φ12 is a U(1)⊗Z2 singlet such terms emerge in a natural way upon inserting

the φ12 VEV into the existing operators (2.1) without any need to enlarge the messenger

sector.

Concerning the qualitative features of the fits, for “case 1” there seems to be preference

of s slightly below 1 leading to ms in the upper σ region. This originates from the fact

that the optimal Mχd
1

/Mχu
1

ratio ∼ 0.04 leads to a natural value for the double ratio of the

physical masses

xfit =
mc/mt

ms/mb
∼ 2r ∼ 0.08 (4.10)

and thus ms should be in its upper-σ region to lower the central value xc ∼ 0.116. Con-

sequently, the pure Georgi-Jarlskog relation ms/mµ = 1/3 (perfectly valid for ms around

25 MeV at the GUT scale) is slightly violated. Note that since s parametrizes the mass

splitting of the type-1 messengers, their masses are anyway expected to differ after the

Pati-Salam symmetry breaking and there is no technical problem to receive s around 0.8

as suggested by the numerics.

In “case 2” solution there is no such need and all the messengers up to those coming

from the χ1 multiplet are nearly degenerate, that suggests further simplification of the un-

derlying theory and, as a consequence, higher level of predictivity of the model. Moreover,

the charged lepton masses and mixing angles conform the Georgi-Jarlskog scenario and

thus for instance θe
12 ≈ Y e

12/Y e
22 ≈ Y d

12/3Y
d
22 ≈ θd

12/3 ≈ 0.05. This means that the charged

lepton corrections to tri-bimaximal neutrino mixing are closely related to the Cabibbo

angle, in particular [63, 64]:

θ13 ≈ 1√
2
θe
12 ≈ 2o (4.11)

θ12 + θ13 cos(δMNS − π) ≈ 35.26o (4.12)

where eq. (4.12) is the sum rule [63, 64] with δMNS being the MNS CP phase which enters

neutrino oscillations, and 35.26o follows from tri-bimaximal neutrino mixing.

With the fit parameters in hand, we see that the consistency of the model requires the

following hierarchy of the various mass scales present:

MX,Y > MGUT > Mχu
1
À Mχ̃1

& Mχd
1

& Mχq
2
∼ Mχl

2

> 〈Σ〉, 〈φ3〉, 〈φ̃23〉 À (4.13)

À δ〈φ23〉, δ〈φ123〉, δ〈φ12〉.
11In the present case (“case 2” in table 5) we allowed for extra variations of order 10−5 in the Yukawa

entries under consideration that is completely harmless for the heavy masses and CKM mixing parameters

but can have dramatic effects on the “small” eigenvalues of Yu,d,l, in particular the up-quark Yukawa, that

is (due to the large hierarchy in the up-sector) by far the smallest eigenvalue in the game and as such also

the most sensitive to the subleading corrections.
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The first two inequalities satisfy the need to generate the proper effective masses of the

Dirac sector messenger fields dynamically via exchange of the “level-2” messengers X and

Y . The third, fourth, fifth and sixth relation ensures the proper Dirac sector messenger

hierarchies described above. The last two relations justify the expansions in the number

of Σ and flavon insertions used throughout the analysis. As it was argued above there

is no problem to satisfy these relations with all the relevant tree-level Yukawa couplings

(c.f. eq. (3.8)) at the O(1) level. Thus, the presented fit is natural. Notice also that the

mildly suppressed 22, 32 and 23 Yukawa entries are reasonable as they arise from higher

order effective operators and thus for instance ε̃d
23 ∼ O(10−1) as suggested by the fit. All

parameters are therefore either of order unity, or their smallness is accounted for by a ratio

of mass scales, apart from the so far unexplained smallness of the parameter δ. In the next

section we shall interpret δ as a volume suppression factor emerging in a higher dimensional

theory.

5. The 5d orbifold GUT model based on SO(3) × SO(10)

5.1 Introduction

The ad-hoc suppression factors present in the 4d model we proposed in the first part of this

paper receive a simple justification once the theory is promoted to more than 4 dimensions.

Indeed, every field propagating in the higher-dimesional bulk receives (from the point of

view of the 4d effective theory) a volume suppression factor that can be used to generate

extra hierarchies in its couplings to the localized fields.

As we have shown in section 4, the physical observables can be fitted even under the

nontrivial assumption that the extra suppression factors in the effective couplings of the

VEVs of the φ23, φ123, φ12 flavons (and an extra Higgs pair) all coincide. Thus, it is natural

to ask whether such an effective 4d model can be understood as a low-energy limit of a

more fundamental 5d theory.

Moreover, unlike the 4d Pati-Salam model, such an embedding could be viewed as a

“true” 5d grand unified model that (as an orbifold GUT) can naturally accommodate the

incomplete GUT multiplets of the effective model provided they live on the orbifold fixed

point with a reduced gauge symmetry.

5.2 The setup

We assume a variation of the “standard” 5-dimensional SO(10) SUSY GUT compactified

on the S1/Z2 × Z ′
2 orbifold [29, 35, 37, 38]. The first Z2 orbifold projection acting on the

fifth coordinate y as y → −y is used to reduce the 5-dimensional N=1 supersymmetry

(equivalent to N=2 SUSY in 4 dimensions) to an effective 4-dimensional N=1 SUSY while

the full SO(10) gauge symmetry is reduced to the Pati-Salam SU(4) ⊗ SU(2)L ⊗ SU(2)R
on the brane located at the fixed point (the Pati-Salam brane) of the second projection

Z ′
2 : y → πR − y . In accordance to the 4d model we assume an SO(3) flavour symmetry

acting on the left-handed matter multiplets living as incomplete SO(10) multiplets at the

Pati-Salam brane. As before, the flavour symmetry is augmented by an additional global

U(1) ⊗ Z2. The graphical representation of the setup is given in figure 6.
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Figure 6: The physical 5-d setup: S1/Z2 × Z ′

2 orbifold is used to break the 5-dimensional N=1

SUSY in the bulk to the 4-d N=1 SUSY of the MSSM, and provides for the first step in the

symmetry breaking of the unified SO(10) gauge group. The geometrical location of some of the

flavon fields yields the necessary suppression factors in the relevant Yukawa textures.

The full set of brane and bulk fields used in our construction can be found in table 6.

We take the advantage of the reduced gauge symmetry to put all the incomplete SO(10)

multiplets to the PS brane. In order to get O(1) Yukawa couplings for the third generation

fermions and only a mild suppression of the second generation masses the Georgi-Jarlskog

Higgs field Σ as well as the light Higgs bidoublet live there12 together with the flavons that

should couple to the matter bilinears without further suppression factors (φ3 and φ̃23).

To obtain a natural suppression of the first and the off-diagonal second family Yukawa

couplings we put the flavons responsible for these interactions to the bulk, i.e. φ23, φ123

and φ12 are assumed to propagate in 5 dimensions. Since there is a need to arrange an

extra suppression factor in the first and second generation Majorana masses the relevant

“primed” Higgs pair (H ′ ⊕ H ′) also lives in the bulk.

As we shall see, such a setup upon compactification naturally leads to the effective

Pati-Salam model constructed in previous sections with the desired Yukawa textures for

the Dirac and Majorana mass matrices.

5.3 The 5d superpotential

The construction goes along similar lines as in the 4d case. In 5d, the relevant pieces of

superpotential read:

W leading
Y ∝

∫

dy δ
(

y − π

2
R

)

×

× 1

Mm

(

1√
M∗

y23
~F . ~φ23F

c
1 +

1√
M∗

y123
~F . ~φ123F

c
2 + y3

~F . ~φ3F
c
3

)

h (5.1)

12Notice that there is no doublet-triplet splitting problem associated to the light doublets since they enter

the game as an incomplete SO(10) multiplet.
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W subl.
Y ∝

∫

dy δ
(

y − π

2
R

)

×

×
[

1

M3
m

ỹ23
~F .

~̃
φ23(~φ3.

~̃
φ23)F

c
3h+

1

M2
m

√
M∗

y12
~F .(~φ3 × ~φ12)F

c
3h +

1

M2
m

yGJ
~F .

~̃
φ23F

c
2hΣ

]

+ . . . (5.2)

W leading
M ∝

∫

dy δ
(

y − π

2
R

)

×

×
[

1

Mm
w3F

c
3

2H2 +
1

M∗
3/2M3

m

(

w1F
c
1

2HH ′φ2
23 + w2F

c
2

2HH ′φ2
123

)

]

(5.3)

W subl.
M ∝

∫

dy δ
(

y − π

2
R

)

[

1

M4
mM2

∗

w4F
c
1

2H ′2(~φ3 × ~φ123).
~̃φ23+

+
1

M4
mM

3/2
∗

w5F
c
2

2HH ′(~φ23×~φ12).
~̃
φ23+

1

M4
mM2

∗

w7F
c
1F c

2HH ′(~φ23 × ~φ123).~φ12 +

+
1

M4
mM

3/2
∗

w9F
c
1F c

3HH ′(~φ3 × ~φ23).~φ12

]

+ ... (5.4)

where as before Mm stands for the masses of the Froggatt-Nielsen messenger fields, R

corresponds to the volume of the extra dimension and the dimensionfull parameter
√

M∗

is associated with every field propagating in the bulk to keep the action dimensionless. It

is then easy to see that integrating over y and assigning

δ ≡ 1√
2πRM∗

(5.5)

we recover all the relevant 4d operators of section 2 with a natural bulk-suppression δ in

all the factors including VEVs of φ23,φ123, φ12 and H ′.

Thus, the 4d theory presented in the first part of the current paper can be viewed as

a low-energy limit of a 5d orbifold GUT model.

6. Conclusions

The problem of fermion masses and mixings has become more interesting over recent years

with the discovery of neutrino mass and mixings, which show that the neutrino sector dif-

fers markedly from the charged fermion sector. The most promising approaches to under-

standing fermion masses and mixings seem to involve a combination of GUT and Family

Symmetries. The most recent neutrino oscillation data is consistent with tri-bimaximal

mixing, which could naturally result from the see-saw mechanism with CSD where a non-

Abelian Family Symmetry such as SU(3), SO(3), or one of its discrete subgroups, provides

a framework for the necessary vacuum alignment of flavon VEVs [63, 65 – 67]. We have

considered a specific 4d model based on Pati-Salam unification and SO(3) gauged Fam-

ily Symmetry, although it could be extended to the case where SO(3) is replaced by one

of its discrete subgroups such as A4, where the problem of vacuum alignment is poten-

tially simpler [66 – 68]. In the relevant low energy effective Yukawa operators the SO(3)
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field Pati-Salam SO(3) U(1) Z2 location
~F (4, 2, 1) 3 0 + PS brane

F c
1 (4, 1, 2) 1 +2 − PS brane

F c
2 (4, 1, 2) 1 +1 + PS brane

F c
3 (4, 1, 2) 1 −3 − PS brane

h (1, 2, 2) 1 0 + PS brane

H, H (4, 1, 2), (4, 1, 2) 1 ±3 + PS brane

H ′, H
′

(4, 1, 2), (4, 2, 1), . . . 1 ∓3 + bulk

Σ (15, 1, 3) 1 -1 − PS brane
~φ3 (1, 1, 1) 3 +3 − PS brane
~̃φ23 (1, 1, 1) 3 0 − PS brane
~φ23 (1, 1, 1) 3 −2 − bulk
~φ123 (1, 1, 1) 3 −1 + bulk
~φ12 (1, 1, 1) 3 0 + bulk

Table 6: The matter, Higgs and flavon content of the model. Placing some of the flavon and

Higgs fields into the bulk leads to an effective “screening” of their 4-d couplings to the Pati-Salam

brane matter multiplets via the relevant volume suppression factors.

flavons enter at the simplest possible one-flavon level, unlike SU(3) where the lowest order

operators must involve at least two flavons.

The existing analyses of models of this kind have so far been performed at the 4d effec-

tive non-renormalizable operator level [63, 65 – 67]. We have gone beyond existing analyses

by considering, as well as the 4d effective non-renormalizable operators, also the underlying

renormalizable 4d model in terms of a high energy messenger sector. This represents an

explicit ultraviolet completion of the model. The messenger sector allows for effectively

different expansion parameters in the different charged sectors. We performed a numerical

analysis which shows that the model provides an excellent fit to the charged fermion mass

spectrum. The model also predicts approximate tri-bimaximal lepton mixing via CSD due

to vacuum alignment of flavon VEVs, with calculable deviations described by the neutrino

sum rule. The strong hierarchy in the charged fermion sector, explained in terms of a

small flavon VEV, gets cancelled in the neutrino sector, via the see-saw mechanism with

sequential dominance, leading to m2 ∼ m3 for the lowest order neutrino masses, with the

mild neutrino hierarchy m2/m3 ∼ 1/5 produced by higher order corrections necessarily

present in the model.

We have shown how the model can originate from a 5d orbifold GUT based on SO(3)×
SO(10). From the perspective of orbifold GUTs this provides significant progress since such

models have not so far provided a convincing explanation of fermion masses and mixings.

The small flavon VEVs responsible for the fermion mass hierarchy, which were postulated

in an ad hoc way from the 4d point of view, are seen to originate from bulk volume

suppression in the 5d theory. The bulk suppressed VEVs reduce the need for very high

dimensional operators, allowing a simpler operator structure which can be more readily

understood at the renormalizable level in terms of an explicit messenger sector. The Pati-
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Salam symmetry is also shown to arise from a broken SO(10) GUT. This demonstrates

that, in the framework of a higher dimensional theory, models based on the gauged Family

Symmetry SO(3), or one of its discrete subgroups, can be fully consistent with SO(10)

Grand Unification.

To summarize, the model presented here provides a good description of fermion masses

and mixings, and a natural explanation of tri-bimaximal lepton mixing. The framework

of non-Abelian Family Symmetry and GUTs, which has been used to account for tri-

bimaximal lepton mixing via CSD and vacuum alignment, has here been combined with

orbifold GUTs. The resulting synthesis allows the fermion mass hierarchy to be explained

by a small bulk suppressed flavon VEV, which simplifies the Yukawa operator structure

considerably, allowing the ultraviolet completion of the model in terms of a renormalizable

messenger sector.
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